
Extended Translation Memories for Multilingual Document Authoring

Jean-Luc Meunier, Marc Dymetman
Xerox Research Centre Europe

6 chemin de Maupertuis, Meylan, France

E-mail: jean-luc.meunier@xrce.xerox.com, marc.dymetman@xrce.xerox.com

Abstract

This paper discusses multilingual document authoring, viewed as providing computer support for a user to author a document in some
source language while automatically generating the same content in one or many target languages. A kind of unanticipated use of
multilingual authoring appeared in the service sector, in situations where an employee is servicing customers by answering their
requests, or helping them, via written electronic communication. Decoupling the employee’s language from the customer’s language
may open up new perspectives and motivated this work, where we propose a small set of extensions to be made on a translation
memory to support multilingual authoring more efficiently. We describe how an instance of such extended formalism can be
conveniently created thanks to a domain specific language and describe how we implemented a full system. Finally, we report on the
experiment we ran in a real business setting.

Keywords: Translation Memory, Writing assistance, Multilingual Authoring, Experimentation, Domain Specific Language

1. Introduction

The need for efficiently producing a document in multiple

languages most probably appeared long time ago, and the

Rosetta Stone is a famous example of this need. One

conventional approach to the problem consists in an

authoring step followed by a translation step. With the

advent of computers and computer science, new tools

emerged, and authoring support tools, translation

memories and machine translation are particularly

relevant with this respect. A new approach emerged in the

90s, which aimed at providing computer support for

authoring a document in multiple languages, merging two

steps into a single activity. One early publication from

Hartley and Paris (1997) says it all in its title:

“Multilingual document production from support for

translating to support for authoring“.

The work presented here contributes to this approach by

extending translation memories for use in multilingual

authoring support. We will first introduce a motivating

business use that was probably not imagined in the 90s,

before giving some background on an existing

multilingual authoring tool. We will then describe how to

extend a translation memory for multilingual authoring

and report on the experiment we ran in a real business

setting.

2. Motivation

A kind of unanticipated use of multilingual authoring

appeared in the service sector, in situations where an

employee is servicing customers by answering their

requests, or helping them, via written electronic

communication. This situation is very common in sectors

like customer care, human resource, finance, etc. The

customer, or more generally requestor, contacts the agent

by email, or by filling in a web form. The agent uses

dedicated tools, e.g. a knowledge base or some customer

relationship management tool, in order to fulfill the

request and provides the requestor with a written answer.

Some requests may need multiple cycles of

communication, forming a conversation. So far, agents

were grouped into language teams in one or several

helpdesk centers and each team was sized to answer the

peak load and cover for the opening hours of the customer

service.

With the globalizing market, the number of serviced

languages is increasing and finding agent speaking the

required language(s) often becomes problematic. Since

companies try to avoid opening one helpdesk per

language/country they service but rather look for ways to

centralize the helpdesks in one or a few helpdesk

center(s), they often face the problem of finding in a

certain country an agent speaking a language that is not

generally spoken in that country. To accommodate with

organizational issues, those agents are often also required

to speak the language of the country or the company.

Finding a person with the required technical and language

skills can prove quite difficult and may require paying a

premium to get the person onboard.

Breaking the language barrier and allowing an agent who

does not speak the requestor’s language to provide

him/her with the required help is therefore attractive to

companies operating in this business sector, even if the

solution allows for handling only a portion of the total

volume of requests.

Machine translation ideally should answer this need: a

request could be automatically translated into the agent’s

language and vice-versa for the agent’s answer.

Practically, coping with translation errors is both critical

and not easy. We distinguish two situations with different

constraints: inbound and outbound correspondence.

For inbound, the request needs to be translated in the

agent’s language so that the agent understands the request

and feels confident about his/her understanding. No need

for a perfect translation quality. In usual quality

evaluation terms, the fluency of the translation is of less

importance than its adequacy, which can be critical.

For outbound correspondence, the translation quality that

is required is much higher since the company is sending a

written answer to a customer. Both fluency and adequacy

are important and the consequence of any translation

errors must be carefully assessed before rolling out such a

system. Although automatic confidence estimation (Blatz

et al., 2004) of the translation could play a role, we have

chosen a different approach based on multilingual

authoring with the goal of allowing the agent to author a

reply in both her/his language and in the customer’s

language. In term of reply’s quality, the multilingual

authoring tool will bring the language knowledge while

the agent will bring the subject matter expertise. The goal

is to create a high quality reply, both at language- and

semantic-levels, so that it is not perceptible that the agent

does not speak the customer’s language.

In the rest of the paper, we will focus on the use of

multilingual authoring for supporting the outgoing

correspondence. More precisely, we focus on how to

extend translation memories for setting up a multilingual

authoring support system.

3. Background: the MDA Tool

Before introducing how a translation memory can be

extended for supporting multilingual authoring, let us

introduce here one pre-existing tool called MDA (Brun et

al., 2000), which stands for Multilingual Document

Authoring. This tool was conceived in the years

1998-2002. It allows a monolingual user to interactively

produce a document in multiple languages, including a

language s/he masters, following a document template

that controls both the semantics and the realization of the

document in multiple languages.

This section describes the MDA tool and its template

inner working, by using excerpts of the publication

“Document structure and multilingual authoring” by

Brun, Dymetman and Lux (2000), so as to introduce the

challenges one faces to support multilingual authoring.

In the next section, we will relate the extended translation

memory formalism to this tool’s template.

3.1 Approach

First, the main requirement for such a tool is that the

authoring process is monolingual, but the results are

multilingual. At each point of the process the author can

view in his/her own language the text s/he has authored so

far. This is in line with the WYSIWYM (What You See Is

What You Mean) editing method described in (Power &

Scott, 1998). In MDA, the areas where the text still needs

refinement are highlighted and menus for selecting a

refinement are also presented to the author is his/her own

language. Thus, the author is always overtly working in

the language s/he knows, but is implicitly building a

language-independent representation of the document

content.

From this representation, the system builds multilingual

texts in any of several languages simultaneously. This

approach characterizes our system as belonging to the

paradigm of “natural language authoring” (Hartley &

Paris, 1997; Power & Scott, 1998) , which is distinguished

from natural language generation by the fact that the

semantic input is provided interactively by a person rather

than by a program accessing digital knowledge

representations.

Second, the system maintains strong control both over the

semantics and the realizations of the document. At the

semantic level, dependencies between different parts of

the representation of the document content can be

imposed: for instance the choice of a certain chemical at a

certain point in a maintenance manual may lead to an

obligatory warning at another point in the manual. At the

realization level, which is not directly manipulated by the

author, the system can impose terminological choices

(e.g. company-specific nomenclature for a given concept)

or stylistic choices (such as choosing between using the

infinitive or the imperative mode in French to express an

instruction to an operator).

Finally, the semantic representation underlying the

authoring process is strongly document-centric and

geared towards directly expressing the choices which

uniquely characterize a given document in an

homogeneous class of documents belonging to the same

domain. The screenshot in figure 1 shows the MDA tool,

with a document being authored.

Figure 1: Screenshot of the MDA tool in use

3.2 Interaction Grammars (IG)

Let us now give some details about the formalism of

Interaction Grammars used by MDA. We start by

explaining the notion of choice tree on the basis of a

simple context-free grammar.

3.2.1. Context-free grammars and choice trees

Let’s consider the following Context-Free Grammar

(CFG), ignoring for now the first column (italic text):
warnSymp warning --> "in case of", symptom, ",",

action.

weak symptom --> "weakness".

conv symptom --> "convulsions".

hea symptom --> "headache".

rest action --> "get some rest".

consult action --> "call your doctor

immediately".

What does it mean to author a “document” with such a

CFG? It means that the author is iteratively presented with

partial derivation trees relative to the grammar (partial in

the sense that leaves can be terminals or non-terminals)

and at each given authoring step both selects a certain

nonterminal to “refine”, and also a given rule to extend

this non-terminal one step further; this action is repeated

until the derivation tree is complete.

If one conventionally uses the identifier in italic in first

column to name each rule, then the collection of choices

made by the author during a session can be represented by

a choice tree labelled with rule identifiers, also called

combinators. An example of such a tree can be written

warnSymp(weak, rest) reflecting the generation of the

text “in case of weakness, get some rest”.

3.2.2. Making choice trees explicit

Choices trees are in MDA the central repository of

document content and we want to manipulate them

explicitly. Definite Clause Grammars (DCG) (Pereira &

Warren, 1980) represent possibly the simplest extension

of context-free grammars permitting such manipulation.

Our context-free grammar can be extended

straightforwardly into the DCG
1
.

warning(warnSymp(S, A)) --> "in case of",

symptom(S), ",", action(A).

symptom(weak) --> "weakness".

symptom(conv) --> "convulsions".

symptom(hea) --> "headache".

action(rest) --> "get some rest".

action(consult) --> "call your doctor

immediately".

What these rules do is simply to construct choice trees

recursively. Thus, the first rule says that if the author has

chosen a symptom through the choice tree S and an action

through the choice tree A, then the choice tree

warnSymp(S, A) represents the description of a warning.

If now, in this DCG, we “forget” all the terminals, which

are language-specific, by replacing them with the empty

string, we obtain the following “abstract grammar”:
warning(warnSymp(S, A)) --> symptom(S),

action(A).

symptom(weak) --> [].

symptom(conv) --> [].

symptom(hea) --> [].

action(rest) --> [].

action(consult) --> [].

This grammar is in fact equivalent to the definite clause

program:
warning(warnSymp(S, A)) :- symptom(S),

action(A).

symptom(Weak) .

symptom(conv) .

symptom(hea) .

action(rest) .

action(consult) .

This abstract grammar (or, equivalently, this logic

program), is language independent and recursively

defines a set of well-formed choice trees of different

categories, or types. Thus, the tree warnSymp(weak, rest)

1
 According to the usual logic programming conventions,

lowercase letters denote predicates and functors, whereas
up-percase letters denote metavariables that can be
instanciated with terms

is well-formed “in” the type warning.

3.2.3. Dependent Types

In order to stress the type-related aspects of the previous

tree specifications, we are actually using in our current

implementation the following notation for the previous

abstract grammar:
warnSymp(S, A)::warning --> S::symptom,

A::action.

weak::symptom --> [].

conv::symptom --> [].

hea::symptom --> [].

rest::action --> [].

consult::action --> [].

The first rule is then read: “if S is a tree of type symptom,

and A a tree of type action, then warnSymp(S, A) is a tree

of type warning”, and similarly for the remaining rules.

The grammars we have given so far are deficient in one

important respect: there is no dependency between the

symptom and the action in the same warning, so that the

tree is warnSymp(weak, rest) is well-formed in the type

address. In order to remedy this problem, dependent types

(Ranta, 2004) can be used. From our point of view, a

dependent type is simply a type that can be parameterized

by objects of other types. We write:
warnSymp(S, A)::warning -->

S::symptom(Severity), A::action(Severity).

weak::symptom(mild) --> [].

conv::symptom(severe) --> [].

hea::symptom(severe) --> [].

rest::action(mild) --> [].

consult::action(severe) --> [].

We have introduced a Severity parameter that is shared

by the two type symptom and action forcing certain

associations between a given symptom and a given action.

3.2.4. Parallel Grammars and Semantics-driven
Compositionality for Text Realization

We have just explained how abstract grammars can be

used for specifying well-formed typed trees representing

the content of a document.

In order to produce actual multilingual documents from

such specifications, a simple approach is to allow for

parallel realization English, French, … grammars, which

all have the same underlying abstract grammar (program),

but which introduce terminals specific to the language at

hand. Thus the following French and English grammars

are parallel to the previous abstract grammar
2
:

warnSymp(S, A)::warning --> “In case of”,

S::symptom(Severity), “, “ ,

A::action(Severity) , “.” .

weak::symptom(mild) --> “weakness”.

conv::symptom(severe) --> “convulsions”.

hea::symptom(severe) --> “headache”.

rest::action(mild) --> “get some rest”.

2
 Because the order of goals in the right-hand side of an

abstract grammar rule is irrelevant, the goals on the
right-hand sides of rule in two parallel realization
grammars can appear in a different order, which permits
certain reorganizations of the linguistic material (situation
not shown in the example).

consult::action(severe) --> “call your doctor”.

warnSymp(S, A)::warning --> “En cas de”,

S::symptom(Severity), “, “ ,

A::action(Severity) , “.” .

weak::symptom(mild) --> “fatigue”.

conv::symptom(severe) --> “convulsions”.

hea::symptom(severe) --> “maux de tête”.

rest::action(mild) --> “prenez du repos”.

consult::action(severe) --> “consultez votre

médecin”.

The logic programming representation of such a grammar

has rules of the following form:
a1(B,C,...)::a(D,...)-english[X,Y, ...] -->

 B::b(E,...)-english[X, ...] ,

 “. . .” ,

 C::c(F,...)-english[Y, ...] ,

 ...

 {constraints(B,C,...,D,E,F,...)},

 {conditional_code(X, Y, ...)}.

Those rules are close to the grammar rules, with

additional language-specific parameters to deal with

constraints that are specific to one language.

As the reader can see, the creation of a MDA template was

a complex task, requiring unusual skills, namely the

knowledge of definite clause grammars and Prolog. On

the other hand we were attracted by the power of the tool

and chose to use it as target platform for our new

formalism.

4. Extending Translation Memories

While the interaction grammars (IG) presented above

proved to apply well to the problem of modelling agents’

replies, or more generally agents’ language, their creation

was somehow complex and requiring uncommon

expertise. We therefore looked for some alternative

formalism. In particular, we considered the structure of a

translation memory, since it intrinsically captures the

desired parallelism between one source language and

some target(s) one(s). It however lacks of the power of a

grammar to define or guide the agent’s language. We have

therefore defined a minimal set of mechanisms that

should be added to a translation memory structure to

support our goal.

The proposal consists in following a Translation Memory

(TM) paradigm, with a set of extensions towards

supporting the creation of document template for

multilingual document authoring by a monolingual user.

Our aim is to facilitate the design of document grammar

for multilingual document authoring by non-experts

More precisely, where a translation memory stores

document fragments together with the corresponding

translation, our extension consists in adding the notion of

fragment type, allowing a fragment to be generalized to a

certain type of textual content; we also introduce the

notion of global variable, allowing some textual contents

to be shared across a document. Each fragment remains

aligned with its counterpart(s) in the other language(s).

Additional mechanisms include constraints and

conditional realization.

Without loss of generality, let’s consider the case of

generating some document in English and French.

We will call ‘designer’ the person in charge of designing a

document grammar, which can then be used by a ‘user’ of

the MDA tool

4.1. A translation memory approach with
Context Free Grammar power

Where a standard translation memory would be a

two-columns table, with parallel segments in English and

French, our extended TM will be a sequence of

four-columns tables:

 Column 1 is the so-called case: it uniquely identifies,

and labels, a specific row within a table.

 Column 2 is the so-called wizard: it is used to guide

the interaction between the multilingual authoring

tool, e.g. legacy MDA, tool and the user, when she/he

authors a new document.

 Column 3 and 4 are the English and French

columns: they contain the realizations (concrete

realizations as character string) of the segment in the

two languages.

 Each additional language would require one addition

column.

Each such table is called a type and has a unique name as

well. See the table named “MyType” in figure 2. Some

common types such as STRING, NUMBER and DATE are

pre-defined in the formalism and in the tool.

The underlying formalism has ties with Context Free

Grammars (CFG), since a type can be seen as a CFG

non-terminal, while the cases correspond to enumerating

and naming the possible production rules for that

non-terminal. More precisely, this formalism has ties with

Synchronous Context Free Grammar (Chiang & Knight,

2006).

Let’s consider a simple CFG grammar like:
Document -> Det Noun Adj “.”

Det -> “one”

Det -> “two”

Noun -> …

…

We would express such a CFG as the sequence of tables

shown in figure 3.

We see that the wizard allows the template designer to

associate a question with a given type. Typically, in the

MDA tool (when a user authors a new document), the tool

will display the question and propose (some or all of) the

case names for that type as possible answers to the user.

The English and French columns of a case can refer (zero

or multiple times) to the types listed in the wizard part of

the case, in any order, and can interleave them with

terminal strings. In the previous example, observe how

the English and French realizations re-order the

non-terminals.

We will call ‘type call’ a non-terminal in the Wizard,

English and French columns, since it can be seen as

‘calling’ a type that is defined in its own extended TM

table.

In addition, because the English and French refer to the

wizard type calls, it may be necessary to distinguish

multiple calls to the same type, e.g. for a rule like

Document -> Det Noun Verb Det Noun.

So a type call may be named for further reference within

the same case from the English or French realization, as

for instance in figure 4.

This Translation Memory Grammar (TMG) approach

makes one step towards supporting multilingual

document authoring using parallel context-free

grammars, but requires additional mechanism to be

available, as we will see below.

4.2. A translation memory approach with
Interaction Grammar power

We are here extending our TMG formalism to support

dependencies between types as well as dealing with extra

conditions on the realization in natural language. As

explained in section 3.2, the existing MDA tool relies on

the so-called Interactive Grammars (IG) formalism,

which is a specialization of the Definite Clause Grammars

(Pereira & Warren, 1980) inspired by the GF formalism

(Ranta, 2004). Please refer to (Brun et al., 2000) for full

details on this formalism.

 We reproduce below the IG abstract grammar (which

does not shows terminals) of the drug warning example:
warnSymp(S,A)::warning -->

S::symptom(SympClass),

A::action(SympClass).

weak::symptom(mild) --> [].

conv::symptom(severe) --> [].

hea::symptom(severe) --> [].

rest::action(mild) --> [].

consult::action(severe) --> [].

We propose here a simple way to inject some key aspect f

the IG formalism in our TM-based formalism to deal with

dependencies among types.

For doing so, a type may have one or multiple attribute(s),

the value of which can be constrained by an equality

operator. The constraint can involve an attribute and a

constant or two attributes. Note that the ‘=’ operator is

asserting a constraint rather than expressing an

assignment.

So the above example would be reflected as shown in

figure 5.

Scoping: the attributes of a type are accessible from the

type itself using the keyword this, or via a reference of a

wizard’s type call within a case. An attribute set in the

wizard column is visible in other columns, while if set in

the ‘French’ column, it will only be visible from a

‘French’ column.

Moreover, it is common when designing a grammar to

require access to certain information from several

different places. Typically, when designing a template of a

letter to a customer, the designer may need to access the

customer name from several parts of the documents,

which will typically correspond to accessing it from

several types of the TM-like template.

We therefore introduce one more mechanism allowing the

designer to declare a so-called global by associating a

(grammar-)unique name with a type. This name can then

be used as reference in any case of any type.

Back to the drug warning, the designer could have for

instance declared DrugName as a global of type STRING to

conveniently insert the name of the drug in a realization.

In addition, the designer could have declared a global

DrugForm of type pharm_form (see in next section) to

reflect the pharmaceutical form of the drug (tablet,

capsule, syrup, eye drop).

4.3. Conditional Realization

We introduce the last mechanism to deal with fine

realization issues. Typically, in French the noun ‘tablet’

has a genre which must be taken into account by a related

adjective or past-participle (among others…).

We introduce conditional realization, where the designer

can condition the realization by constraints on attributes.

(The constraint is enforced locally to the case, unless it

involves a global.)

The example in figure 6 below illustrates this.

The generated grammar also includes a catch-all

mechanism so that if no condition is met, some error

message is produced and shown to the user.

With such formalism, the interaction grammar example

given in section 3.2 is shown in figure 7.

We believed this formalism to considerably alleviate the

complexity of defining the resource required to support

multilingual authoring and were interested in testing this

belief, as described in next sections.

5. Implementation: dedicated tool suite for
the TM Grammar

Editing such a TM grammar is not straightforward

because of its structure as well as the multiple inner

references to types, attributes, etc. We therefore decided

to create some dedicated editing tool.

5.1. XML Lingua

First an XML representation was defined thanks to a

RelaxNG (Clark & Murata, 2001) XML schema. Any

TMG (translation-memory grammar) expressed in this

XML language can then be displayed in the above tabular

structure thanks to a CSS stylesheet.

We then explored the possible use of some off-the-shelf

schema-aware XML editor, but none were supporting the

CSS view in editing mode. So the use of an XML

representation was both convenient and good engineering

practice but was not appropriate for editing purpose.

5.2. Domain Specific Language

We therefore decided to design a Domain Specific

Language (DSL) for our translation-memory grammars

and implemented it using the Eclipse/Xtext/Xtend

framework (www.eclipse.org/org). Eclipse is an “an open

http://www.eclipse.org/org

development platform comprised of extensible

frameworks, tools and runtimes for building, deploying

and managing software across the lifecycle“. Xtext is “a

framework for development of programming languages

and domain specific languages”. Xtend is “a flexible and

expressive dialect of Java”.

The result is an editor with syntax coloring, content

assistance, outline, validation and quick fix facilities

integrated into the Eclipse IDE, which comes with rich

functionalities for versioning etc, and able to generate the

XML representation of a translation-memory grammar.

In Xtext, designing a DSL involves specifying a particular

kind of BNF for the language to describe the concrete

syntax and how it is mapped to an in-memory

representation - the semantic model. This model will be

produced by the parser on-the-fly when it consumes an

input file. The full-fledged editor and required parser are

automatically generated from the special BNF.

In Xtend, one can further enrich the editor, for instance to

define the outline view appearing on the right panel in the

screenshot below. But more importantly, we used Xtend

to automatically generate the XML corresponding to a

TMG being edited.

In order to generate the IG grammar required for the MDA

tool given a TMG instance, we specifically developed a

compiler from XML to IG.

Figure 8 shows the same Symptom/Action example

created within this DSL.

6. Experiment

We experimented the MDA tool and the
translation-memory grammar (TMG) with the help of
colleagues from Xerox service who are running the
Account-Payable office of a Xerox customer. In this
office, Xerox agents are receiving emails from suppliers
of the Xerox customer regarding invoices, payments, etc.
The agents use the customer database and IT
infrastructure to answer the requestors by email as well.
The contractual language is German and this was
requiring the agents to be fluent in German in addition to
the job-specific skills.
Xerox service was interested in testing if combining
machine translation and multilingual authoring would
allow a monolingual English-speaking agent to work in
this context where the business language, contracted by
the customer, is German. More precisely, the goal was to
evaluate the proportion of replies that could be handled by
an English agent using MDA, assuming the machine
translation of the request was satisfactory. Should the
translation be unsatisfactory or MDA inappropriate to
author a reply, then the request would be escalated to a
German-speaking agent.
With the aim of handling the highest possible proportion
of replies, the service team provided us with a typology of
replies and selected the most frequent types for us to
encode those types in a TMG. Given this list of pairs of
(English, German) texts, we then devised a TMG.
Looking at the regularities, we structured each reply as a
sequence made of: greetings, thanks?, message+, ending
(where ? denotes an optional item and + an item occurring
one or more times). We identified 5 different forms of
greetings and ending. The core of the reply could be

structured further into 6 sub-types, totalizing 90 cases, as
they are called in TMG.
In order to jointly design the TMG with the Xerox service
team, we exposed them to the TMG thanks to the tabular
view created by use of the CSS on the XML file. Despite
some of our colleagues were not IT expert, the tabular
structure was easy to understand. So we ended up
exchanging annotated document, namely MS-Word
document in track change mode, so as to work jointly on
the TMG. We show in figure 9 an excerpt of such a
document sent back from our service colleagues who
fixed the German side of the case
“AP13_Missing_Invoice”.
Three rounds of tests were required to reach a satisfactory
level, after a dozen of exchange of the TMG between the
research and service teams. For each tests, the service
team evaluated if a reply was both doable with MDA and
of acceptable quality, on about 150 requests, by asking a
monolingual English agent to answer a
(machine-)translated request.
The table below summarizes the results:

Test results Round 1 Round 2 Round 3

Outbound
unacceptable

81% 42% 7%

Outbound
acceptable

19% 58% 93%

The creation of the first version of TMG took about 4 days
of work, while the following two next versions took 2
days each. The result obtained at round 3 is quite
satisfactory. The use of a human-readable tabular
structure proved to be valuable in this context where
actors with different expertise, linguistic/business/IT,
need to cooperate.
However, the TMG we created remains rather simple in
the sense that only few semantic constraints and linguistic
difficulties were to be handled. Actually, this relatively
low complexity may also be characteristic of the domain
of application because agents’ discourse often follows
some company policy.
It remains unclear how well the TMG can scale to more
sophisticated and advanced answer writing since the
complexity of the grammar may become too high for
handcrafting it. In 2000 Brun et al. chose a rather complex
example involving pharmaceutical notices. We believe
this example would be much easier to write with the TMG
than with the 2000 original formalism. We are looking
forward to new example of practical use to answer this
important question.

7. Conclusion

In this paper we have presented a novel formalism for
multilingual authoring so as to support a user in creating a
document in “his” language while automatically
generating the same content in some foreign language(s).
The proposed formalism consists in a translation memory
structure with a minimal set of additional mechanisms, to
form what we call a Translation Memory Grammar
(TMG).
To operationally implement it, we have relied on a
pre-existing tool called MDA and on its underlying
interactive grammars (IG), themselves implemented in a
logic programming language. While logic programming
was convenient, we believe there are alternative ways to

implement our proposed formalism.
To support the editing of the TMG, we have devised a
domain specific language using modern software
engineering techniques.
Since we introduced this tool in the context of a particular
business need, we have described the experiment we did
with our colleagues from the service arm of our company,
in the context of a contracted provision of service to an
external customer.
From the experiment, we draw the following conclusions:
 The tabular structure is valuable for supporting the

necessary interaction between team members with
different and complementary expertise: linguistic
(source and target languages), business (Account
payable here), IT (for creating the TMG).

 Basic linguistic phenomenon can be captured by
simple syntaxic encoding in the tabular structure,
provided the IT person has rudimentary knowledge
of both the source and target languages.

 The Eclipse/Xtext/Xtend framework allowed us to
create a robust DSL.

 The Translation Memory grammar was powerful and
expressive enough for answering these business
needs.

Unfortunately, at the time of writing of this article we
have no feedback from the field regarding the user
acceptance of the tool and how the new practice compares
to previous one in term of effort/resource. On the other
hand, during test phases, no concern was raised regarding
this matter, so we are optimistic.
We are now looking forward to experimenting with
transferring the TMG editing tool suite to our service
colleagues so as to validate the use of this formalism by
non-specialists.

8. Acknowledgements

We thank Caroline Brun and Veronika Lux as their work

and publications on MDA, jointly with Marc Dymetman,

are central to the present work. We are also thankful to our

colleagues from Xerox service for their participation in

the experiment.

9. References

Blatz, J., Fitzgerald, E., Foster, G., Gandrabur, S., Goutte,

C., Kulesza, A., Sanchis, N., Ueffing, N. (2004,

August). Confidence estimation for machine

translation. In Proceedings of the 20th international

conference on Computational Linguistics(p. 315).

Association for Computational Linguistics.

Brun, C., Dymetman, M., & Lux, V. (2000, June).

Document structure and multilingual authoring. In

Proceedings of the first international conference on

Natural language generation-Volume 14 (pp. 24-31).

Association for Computational Linguistics.

Chiang, D., & Knight, K. (2006). An introduction to

synchronous grammars. Tutorial available at

http://www. isi. edu/∼ chiang/papers/synchtut. pdf.

Clark, J., & Murata, M. RELAX NG Specification. Oasis,

December 2001.

Hartley, A., & Paris, C. (1997). Multilingual document

production from support for translating to support for

authoring. Machine Translation, 12(1-2), 109-129.

Pereira, F. C., & Warren, D. H. (1980). Definite clause

grammars for language analysis—a survey of the

formalism and a comparison with augmented transition

networks. Artificial intelligence, 13(3), 231-278.

Power, R., & Scott, D. (1998, August). Multilingual

authoring using feedback texts. In Proceedings of the

17th international conference on Computational

linguistics-Volume 2 (pp. 1053-1059). Association for

Computational Linguistics.

Ranta, A. (2004). Grammatical framework. Journal of

Functional Programming, 14(2), 145-189.

10. Figures

MyType (Wizard) (English) (French)

Case1-name … … …

Case2-name … … …

…

Figure 2: a type named “MyType” in tabular view.

Document (Wizard) (English) (French)

One-noun-phrase-document “Choose a determiner:” Det
“Choose a noun:” Noun
“Choose an adjective:” Adj

Det Adj Noun “.” Det Noun Adj “.”

Det (Wizard) (English) (French)

Case_one “one” “un”

Case_two “two” “deux”

…

Figure 3: Example of CFG in the proposed formalism.

Document (Wizard) (English) (French)

One-simple-sentence-document “Choose a determiner:”
Det:d1
“Choose a noun:” Noun:n1
“Choose a verb:” Verb
“Choose a determiner:”
Det:d2
“Choose a noun:” Noun:n2

d1 n1 Verb d2 n2 “.” d1 n1 Verb d2 n2 “.”

Figure 4: Reference to type calls

warning (Wizard) (English) (French)

warnSymp “Choose a symptom:”
symptom:S
“Choose an action:” action:A
S.severity =A.severity

”In case of” S ”,” A “.” "En cas de" S "," A "."

symptom (Wizard) (English) (French)

weak this.severity=mild “weakness” …

conv this.severity=severe “convulsions” …

hea this.severity=severe “headache” …

action (Wizard) (English) (French)

rest this.severity=mild ”take some rest” …

consult this.severity=severe “consult immediately” …

Figure 5: An example of constraint

pharm_form (Wizard) (English) (French)

tablet “tablet” ”comprimé”
this.gender=m

capsule “capsule” ”gélule"
this.gender=f

use (Wizard) (English) (French)

swallow “select a form:”
pharm_form:F

“Swallow the” F
“without crunching.”

”Avaler” (F.gender=f “la” | F.gender=m “le”)
F “sans croquer.”

Figure 6: Conditional Realization

Figure 7: Example 3.2.3 fully implemented

Figure 8: The DSL editor for translation-memory grammar in use, with a trace of the compiler producing the

corresponding MDA IG grammar

Figure 9: MS-Word was used in track-change mode to interact with the service team. Note that conditional text,

surrounded by double- red parentheses, was not an issue for them.

